SH7751R Solution Engine TM

(MS7751RSE01)

Overview

4th Edition

Hitachi ULSI Systems Co., Ltd.

MS7751RSE01-M

Cautions

1. Products and product specifications are subject to change without notice.

2. Hitachi ULSI Systems Co., Ltd. makes every attempt to ensure that the information of this manual is correct and reliable; however, Hitachi ULSI Systems Co., Ltd. takes no responsibility for damages or infringement of patent rights or other rights derived from the use of the information, product or circuit.

3. This manual does not authorize the use of the patent rights or other rights of third parties or Hitachi ULSI Systems Co., Ltd.

4. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi ULSI Systems Co., Ltd.

5. The product overview described in this manual may differ slightly from the actual product.

Notes on Using the SH Solution Engine

This section contains topics to be carefully read and considered when using the SH Solution Engine (referred to as Solution Engine) of the Hitachi ULSI systems.

(Solution Engine Components)

- 1. After opening the package, check the following items to confirm that everything is in place.
- a. Solution Engine main unit
- b. CD-ROM (A set of software, User's manual)
- c. Monitor EPROM for big endian
- d. Software license agreement

(How to connect the Solution Engine)

- 2. Before connecting the power supply, cables, development equipment and a daughterboard, the power must be turned off.
- 3. Before turning on the power following the connection of cables and other equipment, check all connections again to be sure that the wiring and polarity are correct.

(Installation)

- 4. Do NOT touch some parts on board during operating, because their temperature is high. Whenever you want to touch them, you must turn off the power and keep enough time to cool down.
- 5. <u>The Solution Engine is developed for evaluation of products before they are put under the</u> <u>development phase. Do not incorporate the Solution Engine into any of the products.</u>
- 6. Do not install the Solution Engine in an area subject to direct sunlight and other areas exposed to heaters or other source of high temperatures.
- 7. Do not choose area subject to extremely dusty condition.
- 8. Use care to keep the board free from contact with pieces of wire, soldering waste and other foreign matter.

(Restriction)

- OS of the host system connected and checked before shipping the Solution Engine is Windows 95. In using Solution Engine by OS other than Windows 95, please use after checking enough.
- 10. Please connect the included power supply adapter to the Solution Engine. Although the power supply terminal stand is mounted in Solution Engine, please do not use it as much as possible.
- 11. When using Ethernet, be sure to connect through a hub. It may be unable to communicate, if Solution Engine is connected directly to PC via a cross cable.
- 12. Ethernet may encounter an abrupt drop of signal level and the line cannot be connected depending on the number of hub line connections or cable length. So that if the Solution Engine is connected to a hub, reduce the number of lines connected to a hub to a minimum to ensure reliable operation.
- 13. The ROM emulator controls reset and NMI while the ROM emulator is used. Do not actuate reset switch (SW2) and abort switch (SW3) during the ROM emulator is used.

- 14. The free warranty period of the system is one year from the delivered day. But it is limited to systems that are being used under normal condition such as environment condition, the way to operate the Solution Engine.
- 15. The warranty is void in the following cases.

a. Any problems of system caused by natural disaster.

b. Systems that are modified and repaired by user

- c. Any problems caused by improper handling
- 16. Do not reprovide the Solution Engine to the people who use the Solution Engine to hinder international peace and safety and do not use the Solution Engine for such aims personally and do not have third parties use the Solution Engine for such aims. For exporting the Solution Engine, follow Foreign Exchange and Foreign Trade Control Low and prescribed procedure.

Components of the Solution Engine

Open the package and check the contents to match against the packing list. Table 0.1 lists the components of the Solution Engine. Figure 0.1 shows the contents of the Solution Engine.

No	Item	Description
1	SH7751R Solution Engine	SH7751R Solution Engine Hardware
2	CD-ROM (Software, User's manual)	C compiler (Trial Version), driver software source file, various header file, User's manual
3	Monitor EPROM	Monitor EPROM for big endian $Vx.xB \times 2(included)$
4	Software License Agreement	Condition to use software

Table 0.1 Solution Engine components

Figure0.1 Components of the Solution Engine

Table of Contents

Notes on Using the SH Solution Engine(1) Components of the Solution Engine(3)

Table of Contents

1.	Features of the Solutio	n Engine	
	1.1	Features of the Solution Engine 1	l
	1.2	Debugging Function1	
	1.3	System Configuration	
	1.4	Software Configuration	
	1.5	Solution Engine Specifications5	;
2.	Setting the Solution E	ngine 6	
	2.1	Connecting the Host System	
	2.2	Connecting the E10A Emulator 1	1
	2.3	Connecting the Power 12	
3.	Switch Functions		
	3.1	Switch (SWn) Functions 13	
	3.2	Jumper Pin Functions	
	3.3	Test Pin Functions	
4.	LED Functions	21	
5.	Memory Map	22	
6.	Hardware Configurati	on 24	
7.	Function Blocks	26	
	7.1	Ethernet Control 26	
	7.2	Serial Control	
	7.3	Super I/O Control 49	
	7.4	Memory Block 52	
	7.5	General-purpose switches	
	7.6	8-bit LED 54	
8.	Interrupt Controller	55	
9.	Expansion Slot (CN1))	
	9.1	Expansion Slot Pin Assignments5	56
	9.2	Expansion Slot Connector configuration	58
	9.3	Daughter Board Dimensions5	58

- 10. I/O Connector (CN18) 59

- 14. Description of Command72

1. Features

The Solution Engine is a system capable of efficiently developing software and hardware for systems that employ the Hitachi SH7751R (SH-4) 32-bit SuperH series microcomputer.

1.1. Features of the Solution Engine

The Solution Engine has the following features.

- 1. All the information concerning this board including the circuit diagrams, various connector specifications, and the internal logic of the FPGA used with the board are contained in the manual.
- The specification of this board is a summary of the proposals presented by Real Time OS manufacturers and many middleware development manufacturers. This is why hardware is configured so as to render OS and middleware easily portable.
- 3. Ethernet controller, PCMCIA controller, serial controller and other peripherals are off-theshelf purchases.
- 4. Because Ethernet, PCMCIA, serial controllers and similar hardware are loaded on the board, system development is easier with these pieces of hardware applied.
- 5. The Solution Engine has the expansion slot outputting address bus and control signals of the SH7751R so that a user's hardware can be connected.
- 6. The Solution Engine has an I/O bus which carries an SH7751R port and the output of the timer output terminal.
- 7. The Solution Engine has CPU bus interface connector so as to trace SH7751R bus signal.

1.2. Debugging Function

The Solution Engine has a monitor program on the board. The monitor program has the following debugging functions.

1. Execution and pause of user programs

The program can be executed from an optional address. When the following condition arises, the user program halts.

- a. When a break point is detected.
- b. When the Reset switch or Abort switch is pressed.
- 2. Display and change of register contents

The contents of the general-purpose register can be displayed and changed as required.

3. Display and change of memory contents

Memory contents can be expressed in mnemonic or hexadecimal numbers and changed as required.

1.3. System Configuration

Figure 1.1 shows a system configuration of the Solution Engine. Figure 1.2 shows an external overview of the Solution Engine.

Connect a host system, a modem and an Ethernet Hub to the Solution Engine according to the debugging environment and peripherals such as a modem.

User must prepare a host system, a modem and an Ethernet hub.

The host system, the modem, the Ethernet hub and power supply used to check the operation before shipping are as follows.

(Host system)

Hitachi FLORA310 and 330 (Windows 95 machine with 9-pin serial connector) (Modem) Microcom V.34ES II (Ethernet Hub) 8-Port Ethernet Hub (Power supply) ATX power supply

[Notes]

Ethernet may encounter an abrupt drop of signal level and the line cannot be connected depending on the number of hub line connections or cable length. When connecting the Solution Engine to the hub, reduce the number of lines connected to the hub to a minimum to ensure reliable operation.

* Windows is a trademark of U.S. Microsoft Corporation.

Figure 1.1 System configuration of the Solution Engine

Figure 1.2 SH7751R Solution Engine External view

The Solution Engine has a monitor program in EPROM. The monitor program displays memory data and executes programs transferred to user memory. The user program can be executed and evaluated by connecting the host system.

For connection between host system and the Solution Engine, terminal software such as hyper terminal mounted as a standard accessory of Windows 95 can be used.

The source programs input by using various editors can be converted into machine language by using the C compiler, the assembler, the linkage editor and the object converter.

Figure 1.3 shows software configuration when the Solution Engine is connected to the host system. For more details on the functions and the usage of the supplied software, refer to ReadMe.txt in the CD-ROM.

Figure 1.3 Software Configuration when connected to the Host System

1.5. Solution Engine Specifications

Table1.1 lists the functional specifications of the Solution Engine. Table1.2 lists the specifications for the power supply, dimensions and environmental factors.

Ι	tem	Specifications
Subject dev	vice	SH7751R(SH-4 PCI)
System Clock		Operation frequency: Internal 240MHz, External: 60MHz(Maximum 81MHz*) (20MHz oscillation module is equipped) Oscillation module model name: SG-8002DC-20M-PTCB(SEIKO-EPSON)
User memo	ory	64-MByte SDRAM(Cycle time: 10ns) SDRAM model name: uPD45128841G5-A75-9JF (ELPIDA)
ROM	Flash ROM	4-Mbyte Flash ROM model name: MBM29LV160T-90PFTN (Fujitsu)
	EPROM	2-Mbyte(mounted) EPROM model name: MX27C8100PC-10 (MACRONIX)
Ethernet		10/100BASE-TX 1ch Controller model name: Am79C973AVC(AMD)
PCMCIA		1 slot Controller model name: MR-SHPC-01 V2 (Marubun)
Serial Inter	face	1ch Controller: SH7751R on-chip SCIF
Super I/O (Expansion	n Board)	Serial 2ch, Parallel 1ch, IDE 2ch, FDC 1ch, USB 2ch, PS2(Keyboard/Mouse) 2ch mounted Controller model name: M1543C B1(ALi)
Monitor Program	Host System	FLORA310 or equivalent (Windows95 or Windows98 is equipped)
0	Host Interface	RS-232C interface 9 pin connector used (Transfer speed: 9600, 19200, 38400, 115200bit/s)
Command		17 commands ML(Memory Load), RR(Register Read), RW(Register Write), RC(Register Clear), ME(Memory Edit), G(Go), BS(Breakpoint Set) and etc.
Componen	ts	Solution Engine, CD-ROM (User's manual) and etc.

Table 1.1 Functional Specifications of the Solution Engine

(Note)* MS7751RSE01 can be execute external 81MHz except for PCMCIA as maximum. 66MHz specification.

Item	Specifications
Environment	Operating conditions
	- Temperature: 10-35 degree C
	- Humidity: 30-85%RH (no condensation)
	- Ambient gas: Should not have corrosive gas
Operating voltage	DC3.3V, 5.0V, 12V (Off-the-shelf power supply for ATX should be used)
Current consumption	1A (temporary value)
External dimension	ATX size
	304.8mm×243.84mm

Table 1.2 Power Supply, Dimensions and Environmental Factors of the Solution Engine

2. Setting the Solution Engine

After opening the package, set the Solution Engine as follows.

1. Choosing the debugging environment

The Solution Engine has a monitor program stored in EPROM. Connect the host system equivalent of FLORA310 to use the monitor program.

The monitor program is an implementation of the basic functions including reference and change of memory data and execution of programs. Use E10A emulator for trace of user programs and other debugging.

2. Connecting a daughterboard

When using a daughterboard, connect the cable to the expansion slot (CN1) on the Solution Engine.

3. Connecting the modem

Connect the modem to M1543C B1 COM1 connector (CN3). M1543C B1 COM1 connector outputs all signals necessary for connection of the modem.

4. Connecting the LAN

Connect the LAN to the RJ-45 connector (CN7) via the Ethernet hub.

5. Connecting the I/O board

Use the I/O connector (CN18) to use SH's general-purpose I/O port. The I/O connector outputs all general-purpose ports of the microcomputer.

6. Setting Jumper Pins and DIP SW

Set jumper pins and the DIP SW according to the operating condition.

7. Connecting the power supply

Connect power supply cable of ATX power to CN16. Do not connect to CN16 while ATX power supply remains connected to AC110V.

[Notes]

- Before connecting ATX power supply to the 110V AC power following upon completion of Steps 1 through 7 above, recheck that connection of the board and a cable, and setting of jumper pins and DIP switches are correct.
- (2) When using Ethernet, be sure to connect through HUB. It may be unable to communicate, if the Solution Engine is connected directly to PC via a cross cable.

Figure 2.1 shows the procedure to install the Solution Engine.

Figure 2.1 Installing the Solution Engine

Figure 2.1 Installing the Solution Engine

2.1. Connecting the host system

To use the monitor program, connect the host interface connector (CN2) to the host system via an interface cable. Figure 2.2 shows how to connect the host system.

Figure 2.2 Connecting the host system

1. Host Interface Cable

For example, Figure 2.3 shows the wire connection when FLORA310 is connected to the Solution Engine. The Solution Engine can be connected to the host system via an off-the-shelf 9-pin cross cable.

Figure 2.3 Wire connection between FLORA310 and the Solution Engine

2. Transfer Speed Setting

9600, 19200, 38400 and 115200 bit/s can be selected as a transfer speed with DIP switches (SW5-1, SW5-2) on the Solution Engine. Set the DIP switch according to the transfer rate. For specifications of the DIP switch, refer to Section 3.1 (4), "DIP switch(SW5) for setting baud rate".

3. Host Interface Connector (CN2)

Figure 2.4 shows the pin assignments of the host interface connector (CN2) and the list of signals.

Figure 2.4 Pin Assignments (CN2)

This Solution Engine has a debugging chip(*Note) on the SH7751R, and SH7751R E10A emulator can be used. Figure 2.5 shows how to connect the E10A emulator.

The PCMCIA card emulator that is main unit of SH7751R E10A emulator can be connected to the connector (CN19) via H-UDI port (Hitachi-User Debug Interface).

The E10A emulator connectable to the Solution Engine is as follows.

For more details on the connecting method and the E10A emulator setup, refer to the following manual.

Hitachi Co., Ltd. E10A emulator HS7751RKCM02H(PCMCIA)

*Note: Debugging chip is same as actual chip.

Figure 2.5 Connecting the E10A emulator

2.3. Connecting the power supply

1. Connecting ATX power supply

SH7751R Solution Engine uses ATX power supply (option product) as a power supply. Connect the power supply to AC110V as shown in figure 2.6.

[Notes]

Before connecting the power adapter, recheck the board and cable are correctly connected, and check the jumper pins and DIP switch are correctly set.

Figure 2.6 Connecting the power source

3. Switch Functions

3.1. Switch (SWn) functions

1. Power supply switch (SW1)

This switch is to turn ON and OFF power supply of SH7751R Solution Engine. This switch is a push button switch. Power supply is turned to ON or OFF by pushing this switch.

Figure 3.1 Power supply switch

2. Reset Switch (SW2)

This switch is to reset microcomputer. This switch is a push button switch. The microcomputer is reset by pushing this switch. Reset is cleared by releasing this switch [Notes]

While ROM emulator is used, ROM emulator controls reset of the microcomputer. Do not operate the reset switch when connecting the ROM emulator.

Figure 3.2 Reset switch

3. Abort switch(SW3)

This switch controls NMI pin of the microcomputer. This switch is a push button switch. NMI pin is turned to Low by pushing this switch. NMI pin is turned to High by releasing this switch.

[Notes]

ROM emulator controls NMI pin while ROM emulator is used. Do not operate the abort switch when connecting ROM emulator.

Figure 3.3 Abort switch (SW3)

4. **DIP** switch for setting microcomputer operating mode(SW4)

Figure 3.4 shows the DIP switch for setting microcomputer operating mode (SW4).

Table3.1 shows switch functions. This switch is connected to mode pins (MD0-MD5) of the SH7751R. This switch can select the operating mode and endian as shown in table3.1. This switch must be switched while the power supply is in OFF state.

Figure 3.4 DIP switch for setting microcomputer operating mode(SW4)

SW	Name	Function	Function						
SW4-1 SW4-2 SW4-3	Microcomputer operating mode setting switch	SW4-1 to S selects cloc	SW4-1 to SW4-3 is connected to mode pins MD0 to MD2, and this switch selects clock operating mode of the SH7751R.						
		SW4-1	SW4-2	SW4-3	MD[0:2]	Clock operating mode	remarks		
		ON	ON	ON	000	Mode0	At shipment		
		OFF	ON	ON	100	Mode1			
		ON OFF ON 010 Mode2							
		OFF	OFF	ON	110	Mode3			
		ON	ON	OFF	001	Mode4			
		OFF	ON	OFF	101	Mode5			
SW4-4 SW4-5	Area0 bus width select switch	SW4-4 and SW4-5 are connected to mode pins MD3 and MD4, and select bus width of Area0 (CS0). Bus width is fixed to 32-bit. SW4-4 and SW4-5 must be used in OFE state							
SW4-6	Endian select switch	SW4-6 is connected to mode pin MD5 of the SH7751R, and select big endian or little endian. [ON] Big endian [OFF] (At shipment) Little endian							

Table3.1	Functions	of	SW4
1 40100.1	i unetiono	U 1	0

5. DIP Switch for setting baud rate(SW5)

Figure 3.5 shows DIP switch for setting the baud rate (SW5). Table 3.2 lists the functions of the switch. As listed in Table 3.2, this switch can select the baud rate of the SH7751R on-chip SCIF and ROM placed at area 0.

Figure 3.5 DIP Switch for setting the baud rate(SW5)

SW	Name	Function
SW5-1 SW5-2	SH7751R SCIF baud rate select switch	Select the baud rate of SH7751R on-chip SCIF2 (SCI with FIFO). [SW5-1: OFF, SW5-2: OFF] (At shipment) 9600bit/s [SW5-1: ON, SW5-2: OFF] 119200bit/s [SW5-1: OFF, SW5-2: ON] 38400bit/s [SW5-1: ON, SW5-2: ON] 115200bit/s
SW5-3 SW5-4	ROM select switch	Select ROM placed at h'0000000-h'00FFFFFF and h'01000000-h'01FFFFF. [SW5-3: ON, SW5-4: ON](At shipment) h'00000000-h'003FFFFF: EPROM h'01000000-h'013FFFFF: Flash ROM [SW5-3: OFF, SW5-4: ON] h'00000000-h'003FFFFF: Flash ROM [SW5-3: ON, SW5-4: OFF] h'00000000-h'003FFFFF: CPU bus I/F connector(CN20) h'01000000-h'003FFFFF: Flash ROM [SW5-3: ON, SW5-4: OFF] h'00000000-h'003FFFFF: CPU bus I/F connector(CN20) h'01000000-h'003FFFFF: CPU bus I/F connector(CN20) h'01000000-h'013FFFFF: EPROM
SW5-6	CS6 on-board resource select switch	Select whether to use peripheral LSI of CS6 area on the Solution Engine. [SW5-6: ON] (At shipment) Use peripheral LSI of CS6 area. [SW5-6: OFF] Peripheral LSI (MR-SHPC-01) placed at CS6 area is allocated at CS1. All space of CS6 is allocated to expansion slot. This switch can be used for evaluating a daughterboard using CS6.
SW5-5 SW5-7 SW5-8	For test(Not used)	This switch is for testing. [SW5-5: ON, SW5-7: ON, SW5-8: ON] (At shipment) Do not change the factory-shipped setting.

Table3.2 SW5 Functions

3.2. Jumper Pin (Jn) Functions

1. Test Jumper1 (J1)

This jumper is the jumper for testing SH7751R PCIC. Table 3.3 shows the function of the jumper for testing SH7751R PCIC.

This jumper must be used while pins 1-2 are closed.

When pins 2-3 are closed, microcomputer does not work.

Table3.3 Functions of the jumper for testing SH7751R PCIC (J1)

Jumper Pin name	Jumper Pin Connected State	Function
J1	$1^{\bigcirc} 3$ (1-2pin closed)	Input 33MHz to SH7751 PCICLK.(at shipment)
	$ \begin{array}{c} J1 \\ 1 \hline \bigcirc \bigcirc \bigcirc 3 \\ (2-3 \text{pin closed}) \end{array} $	Power supply is not provided to SH7751 PCICLK.

2. Test jumper2 (J2)

This jumper is the jumper for testing NMI pin. Table3.4 shows the function of the jumper for testing NMI pin. Use this jumper while pins 1-2 are closed.

When pins 2-3 are closed, the microcomputer does not work.

Close pins1-2 and connect NMI clip to TP3 while ROM emulator is used.

Jumper Pin name	Jumper Pin Connected State	Function
J2	$1 \bigcirc 3$ (1-2pin closed)	Abort switch can control NMI pin of the SH7751.(at shipment) Close 1-2pin and connect NMI clip to TP3 when connecting ROM emulator by using ROM socket
	J2 1 • • • • 3 (2-3pin closed)	Abort switch makes NMI pin of the SH7751 unconnected, NMI pin is connected to CPU bus interface. Close 2-3pin when connecting ROM emulator by using CPU bus interface connector.

Table3.4 Function of the jumper for testing NMI pin (J2)

3. Test Jumper3 (J3)

This jumper is the jumper for testing ATX power supply control. Table3.5 shows the function of the jumper for testing ATX power supply control. Use this jumper with 2-3pin closed.

When 1-2pin is closed, ATX power is in ON state at all times, and the power supply switch on the Solution Engine become invalid.

Table3.5	Function	of the	iumi	per for	testing	ATX	power	supply	control
			J I				P	~~~~~	

Jumper Pin name	Jumper Pin Connected State	Function
J3	$1^{\bigcirc 0}_{3}$ (1-2pin closed)	ATX power supply is in ON state, and power supply is provided to the Solution Engine all the time.
	10 3 (2-3pin closed)	Power supply switch(SW1) on the Solution Engine controls ON/OFF of ATX power supply.(at shipment)

4. Expansion slot 5V power supply(J4)

Table3.6 shows the function of the expansion slot 5V power supply jumper (J4). As shown table3.6, this jumper connects pins A66 and A67 of the expansion slot to 5V power supply on the Solution Engine.

When mounting LSI or IC that need analog 5V power supply, analog 5V power can be provided from pins A66 and A67 of the expansion slot by closing J1.

Signals of address bus and data bus output to the expansion slot are 3.3V.

Mount $3.3V \rightarrow 5V$ interface IC on a daughterboard if 5V interface is necessary.

Table 3.6	Function of the expansion slot	t 5V power supply j	umper (J4)
			· · · · /

Jumper Pin name	Jumper Pin Connected State	Function
J4	J4 1 2 (Closed)	Pins A 66 and A67 of the expansion slot are connected to A+5V of the Solution Engine. In this state, A+5V power is provided to the daughterboard.
	$1 \bigcirc 0 2$ (Open)	Power supply switch on the Solution Engine controls ON/OFF of ATX power.

3.3. Description of test pin (TPn)

Table 3.7 lists the function of test pins.

Test Pin	Function
TP1	For test (Flash Ready/Busy)
TP2	RESET-IN (Connect RESET probe when using IC socket-equipped ROM emulation)
TP3	NMI-IN (Connect NMI probe when using IC socket-equipped ROM emulator)
TP4	For test (Super I/O)
TP5	For test (Super I/O)
TP6	For test (Super I/O)
TP7	For test (Super I/O)
TP8	For test (Super I/O)
TP9	For test (Super I/O)
TP10	For test (Super I/O)
TP11	For test (Super I/O)
TP12	For test (Super I/O)
TP13	For test (Super I/O)
TP14	For test (Super I/O)
TP15	For test (Super I/O)

Table 3.7 Test Pin Functions

4. LED Functions

1. Power LED (LED17)

This LED indicates that the power is supplied correctly. Function is as follows.

LED ON: Power is supplied to the Solution Engine.

LED OFF: Power is not supplied to the Solution Engine.

2. CPU Status LED (LED9-LED12)

This LED indicates CPU operation. Function is as follows.

LED9 ON: CPU is in RESET mode.

LED10 ON: CPU is in SLEEP mode.

LED11 ON: CPU is in STANBY mode.

LED12 ON: CPU is under operating condition

3. PC card detection LED (LED13)

This LED indicates that the PCMCIA controller detects the PC card normally. LED ON: PC card is detected. LED OFF: PC card is not detected.

4. Ethernet line monitor LED (CN7-LED1 CN7-LED2, LED14-LED15)

This LED indicates presence or absence of transmit signal and receive signal and connected condition of Ethernet line. For mode details on LED, refer to Section7, "Function block".

5. HDD access LED (LED16)

This LED indicates access condition to HDD. Function is as follows. LED ON: Accessing to HDD LED OFF: Not accessing to HDD.

6. 8-bit LED (LED1-LED8)

This LED is 8-bit LED that can turn ON and OFF LED via register allocated to memory map of the Solution Engine. For mode details on usage, refer to Section7, "Function block".

5. Memory map

Area No.	Space name	Bus width	Space	Device	Remarks
Area 0	ROM Area (Area for EPROM and Flash memory)	32Bit (5WAIT)	16MB Real capacity (4MB) h'0000000- h'003FFFFF 16MB Real capacity (4MB) h'01000000- h'013FFFFF	EPROM MX27C8100PC-10 (MACRONIX)×2 or equivalent 42pin socket ×2 FlashROM MBM29LV160T-90PFTN (FUJITSU) ×2	 ROM emulator can be connected. SW5-3 and SW5-4 can change the place of EPROM and Flash ROM. 8Mbit EPROM can be used. MX27C8100PC-10 (MACRONIX) ×2
			32MB h'02000000- h'03FFFFFF		Expansion area0 Expansion slot/CS0 assert
Areal	Expansion Area1 (On expansion connector)	Option	64MB h'04000000- h'07FFFFFF	Expansion area1	Expansion slot/CS1 assert
Area2	Expansion Area2 (On expansion connector)	Option	64MB h'08000000- h'0BFFFFFF	Expansion area2	Expansion slot/CS2 assert
Area3	SDRAM Area	32Bit	64MB Real capacity (64MB) h'0C000000- h'0FFFFFF	Device Model name: UPD45128841G5-A75-9JF (ELPIDA) ×4 (128M SDRAM)	
Area4	Expansion Area4	Option	64MB h'10000000- h'13FFFFFF	Expansion Area4	Expansion Area4 Expansion slot/CS4 assert

Figure 5.1 shows the memory map of the Solution Engine.

Figure 5.1 Memory map

Area No.	Space name	Bus width	Space	Device	Remarks
Area5	Expansion Area5 (on expansion connector)	Option	64MB h'14000000- h'17FFFFFF	Expansion Area5	Expansion Area5 Expansion slot/CS5 assert
Area6	16Bit Peripheral device control register	16Bit (3WAIT)	16MB h'18000000 -h'18FFFFFF	Card controller LSI area manufactured by MARUBUN Model name: MR-SHPC-01 V2	Memory and register must access to this area.
			16MB h'19000000 -h'19FFFFFF	General-purpose switch area	This area reads general- purpose register ×2
			16MB h'1A000000 -h'1AFFFFF	Area for debug LED	Area for debug LED Single LED ×8
			16MB h'1B000000 -h'1BFFFFF	Test mode area	Area for testing the Solution Engine. This address is not open to users. Do not access to this area.
Area7	SH7751R incorporated	-	h'1C000000 -h'1CFFFFFF		
			H' 1D000000 -h' 1DFFFFFF	PCI memory space Access area	
			H'1E000000 -h'1E1F0000		
			h'1E200000 -h'1E2000FF	PCIC register PCI configuration register area	
			h'1E20010 -h'1E200227	PCIC register PCIC local register area	
			H'1E200228 -h'1E23FFFF		
			h'1E240000 -h'1E27FFFF	PCI I/O space Access area	
			H'E280000 -h'1FFFFFFF		

Figure 5.1 Memory map

6. Hardware Configuration

		Figure 6.1 shows the block diagram of Solution Engine.
		As figure 6.1 shows, there are 3.3V bus, 5V bus and PCI bus.
1.	3.3V Bus	
		Memory including SDRAM and Flash ROM are connected to 3.3V Bus to execute user program
		at high-speed.
2.	5V Bus	
		EPROM is 5V bus interface. EPROM is connected to SH via $3V \rightarrow 5V$ conversion buffer.
3.	PCI Bus	
		This PCI Bus used SH7751R PCIC. M1543C B1, Am79C973AVC and 2slot of PCI bus slot are
		connected to PCI bus.

Figure 6.1 Block diagramof the Solution Engine

7. Function Block

7.1. Ethernet Control

1. Block description

Figure7.1 shows a block diagram of the Ethernet control block. The Ethernet control block has a controller (Am79C973A manufactured by AMD), serial EPROM (NM93C46) and a pulse transformer (H1081 manufactured by Pulse Engineering), and provides Ethernet-interface at 10BASE-T/100BASE-TX via RJ-45 connector CN7.

Other features include LEDs (CN7-LED1, CN7-LED2, LED14-LED15) used to indicate the presence of reception signals. In addition, a 25MHz crystal oscillator (<3) is mounted as the operation clock of Am70C973A.

Figure 7.1 Ethernet Control Block Diagram

2. Memory Map

Figure 7.2 shows a memory map of the Ethernet controller.

Am79C973AVC uses 32byte(h'00-h'1F) on PCI bus.

Address of the memory map is offset address. Address on the PCI bus is decided by adding the set PCI base address.

Am79C973AVC can be assigned to both memory and I/O, because Am79C973AVC is connected to device number0 (IDSEL=AD16).

Figure 7.2. Ethernet memory map

Am79C973AVC PCI Configuration register

a.

Table 7.1 shows a configuration of the PCI configuration register. The PCI configuration register is assigned to allocate Am79C973AVC on the PCI bus.

31	24	23	16	15	8	7	0	Offset
	Devi	ce ID			Vendor ID			
	Sta	atus			Command			h'04
Base-C	Class	Sub-C	Class	Programm	ning IF	Revision ID		h'08
Reser	ved	Header	Туре	Latency	Timer	Reserved		h'0C
			I/O Base	Address				h'10
		Memory	/ Mapped	I/O Base Ad	dress			h'14
	Reserved							
Reserved								h'1C
Reserved								h'20
Reserved							h'24	
Reserved								h'28
	Subsystem ID Subsystem Vendor ID							h'2C
		Expar	sion RON	M Base Addr	ess			h'30
Reserved CAP-PTR							ł	h'34
Reserved								h'38
MAX_	LAT	MIN_	GNT	Interrup	t Pin	Interrupt Li	ne	h'3C
PMC				NXT_ITM	/I_PTR	CAP_ID		h'40
DATA_REG PMCSR_BSE				PMCSR			h'44	
Reserved							-	
							-	
Reserved							h'FC	

Table 7.1. Configuration of DP83902A Register

b.

Table7.2 shows a configuration of Control and Status register. CSR sets address of CSR to RAP and accesses from RDP.

RAP Addr	Symbol	Default Value	Comments	Use
00	CSR0	uuuu 0004	Am79C973/Am79C975 Controller Status Register	R
01	CSR1	uuuu uuuu	Lower IADR: maps to location 16	S
02	CSR2	uuuu uuuu	Upper IADR: maps to location 17	S
03	CSR3	uuuu 0000	Interrupt Masks and Deferral Control	S
04	CSR4	uuuu 0115	Test and Features Control	R
05	CSR5	uuuu 0000	Extended Control and Interrupt 1	R
06	CSR6	uuuu uuuu	RXTX: RX/TX Encoded Ring Lengths	S
07	CSR7	0uuu 0000	Extended Control and Interrupt 1	R
08	CSR8	uuuu uuuu	LADRF0: Logical Address Filter — LADRF[15:0]	S
09	CSR9	uuuu uuuu	LADRF1: Logical Address Filter — LADRF[31:16]	S
10	CSR10	uuuu uuuu	LADRF2: Logical Address Filter — LADRF[47:32]	S
11	CSR11	uuuu uuuu	LADRF3: Logical Address Filter — LADRF[63:48]	S
12	CSR12	uuuu uuuu	PADR0: Physical Address Register — PADR[15:0]	S
13	CSR13	uuuu uuuu	PADR1: Physical Address Register — PADR[31:16]	S
14	CSR14	uuuu uuuu	PADR2: Physical Address Register — PADR[47:32]	S
15	CSR15	see register description	MODE: Mode Register	S
16	CSR16	uuuu uuuu	IADRL: Base Address of INIT Block Lower (Copy)	Т
17	CSR17	uuuu uuuu	IADRH: Base Address of INIT Block Upper (Copy)	Т
18	CSR18	uuuu uuuu	CRBAL: Current RCV Buffer Address Lower	Т
19	CSR19	uuuu uuuu	CRBAU: Current RCV Buffer Address Upper	Т
20	CSR20	uuuu uuuu	CXBAL: Current XMT Buffer Address Lower	Т
21	CSR21	uuuu uuuu	CXBAU: Current XMT Buffer Address Upper	Т
22	CSR22	uuuu uuuu	NRBAL: Next RCV Buffer Address Lower	Т
23	CSR23	uuuu uuuu	NRBAU: Next RCV Buffer Address Upper	Т
24	CSR24	uuuu uuuu	BADRL: Base Address of RCV Ring Lower	S
25	CSR25	uuuu uuuu	BADRU: Base Address of RCV Ring Upper	S
26	CSR26	uuuu uuuu	NRDAL: Next RCV Descriptor Address Lower	Т
27	CSR27	uuuu uuuu	NRDAU: Next RCV Descriptor Address Upper	Т
28	CSR28	uuuu uuuu	CRDAL: Current RCV Descriptor Address Lower	Т
29	CSR29	uuuu uuuu	CRDAU: Current RCV Descriptor Address Upper	Т
30	CSR30	uuuu uuuu	BADXL: Base Address of XMT Ring Lower	S
31	CSR31	uuuu uuuu	BADXU: Base Address of XMT Ring Upper	S
32	CSR32	uuuu uuuu	NXDAL: Next XMT Descriptor Address Lower	Т
33	CSR33	uuuu uuuu	NXDAU: Next XMT Descriptor Address Upper	Т

Table7.2 Configuration of Control and Status register

Note:

u = undefined value, R = Running register, S = Setup register, T = Test register;

all default values are in hexadecimal format.
RAP Addr	Symbol	Default Value	Comments	
34	CSR34	uuuu uuuu	CXDAL: Current XMT Descriptor Address Lower	Т
35	CSR35	uuuu uuuu	CXDAU: Current XMT Descriptor Address Upper	Т
36	CSR36	uuuu uuuu	NNRDAL: Next Next Receive Descriptor Address Lower	Т
37	CSR37	uuuu uuuu	NNRDAU: Next Next Receive Descriptor Address Upper	Т
38	CSR38	uuuu uuuu	NNXDAL: Next Next Transmit Descriptor Address Lower	Т
39	CSR39	uuuu uuuu	NNXDAU: Next Next Transmit Descriptor Address Upper	Т
40	CSR40	uuuu uuuu	CRBC: Current Receive Byte Count	Т
41	CSR41	uuuu uuuu	CRST: Current Receive Status	Т
42	CSR42	uuuu uuuu	CXBC: Current Transmit Byte	Т
43	CSR43	uuuu uuuu	CXST: Current Transmit Status	Т
44	CSR44	uuuu uuuu	NRBC: Next RCV Byte Count	Т
45	CSR45	uuuu uuuu	NRST: Next RCV Status	Т
46	CSR46	uuuu uuuu	POLL: Poll Time Counter	Т
47	CSR47	uuuu uuuu	PI: Polling Interval	S
48	CSR48	uuuu uuuu	Reserved	
49	CSR49	uuuu uuuu	Reserved	
50	CSR50	uuuu uuuu	Reserved	
51	CSR51	uuuu uuuu	Reserved	
52	CSR52	uuuu uuuu	Reserved	
53	CSR53	uuuu uuuu	Reserved	
54	CSR54	uuuu uuuu	Reserved	
55	CSR55	uuuu uuuu	Reserved	
56	CSR56	uuuu uuuu	Reserved	
57	CSR57	uuuu uuuu	Reserved	
58	CSR58	see register description	SWS: Software Style	S
59	CSR59	uuuu uuuu	Reserved	Т
60	CSR60	uuuu uuuu	PXDAL: Previous XMT Descriptor Address Lower	Т
61	CSR61	uuuu uuuu	PXDAU: Previous XMT Descriptor Address Upper	Т
62	CSR62	uuuu uuuu	PXBC: Previous Transmit Byte Count	Т
63	CSR63	uuuu uuuu	PXST: Previous Transmit Status	Т
64	CSR64	uuuu uuuu	NXBAL: Next XMT Buffer Address Lower	Т
65	CSR65	uuuu uuuu	NXBAU: Next XMT Buffer Address Upper	Т
66	CSR66	uuuu uuuu	NXBC: Next Transmit Byte Count	Т
67	CSR67	uuuu uuuu	NXST: Next Transmit Status	Т
68	CSR68	uuuu uuuu	Reserved	
69	CSR69	uuuu uuuu	Reserved	
70	CSR70	uuuu uuuu	Reserved	

Table7.2 Configuration of Control and Status register

RAP Addr	Symbol	Default Value	Comments	
71	CSR71	uuuu uuuu	Reserved	
72	CSR72	uuuu uuuu	RCVRC: RCV Ring Counter	Т
73	CSR73	uuuu uuuu	Reserved	
74	CSR74	uuuu uuuu	XMTRC: XMT Ring Counter	Т
75	CSR75	uuuu uuuu	Reserved	
76	CSR76	uuuu uuuu	RCVRL: RCV Ring Length	S
77	CSR77	uuuu uuuu	Reserved	
78	CSR78	uuuu uuuu	XMTRL: XMT Ring Length	S
79	CSR79	uuuu uuuu	Reserved	
80	CSR80	uuuu 1410	DMATCFW: DMA Transfer Counter and FIFO Threshold	S
81	CSR81	uuuu uuuu	Reserved	
82	CSR82	uuuu uuuu	Transmit Descriptor Pointer Address Lower	S
83	CSR83	uuuu uuuu	Reserved	
84	CSR84	uuuu uuuu	DMABA: Address Register Lower	Т
85	CSR85	uuuu uuuu	DMABA: Address Register Upper	Т
86	CSR86	uuuu uuuu	DMABC: Buffer Byte Counter	
87	CSR87	uuuu uuuu	Reserved	
88	CSR88	262 5003 (Am79C973) 262 7003	Chip ID Register Lower	
80	CCD20	(Am/9C9/5)	Chin ID Desister Unner T	
89 00	CSR89	uuuu 262	Chip ID Register Opper 1	
90	CSR90		Reserved	
91	CSR91		RESERVED RCON: Ring Length Conversion	<u> </u>
92	CSR92		Pasarvad	-
93	CSR93		Reserved	
94	CSR94		Reserved	
95	CSP06		Reserved	+
90	CSR90		Reserved	+
98	CSR08		Reserved	+
00	CSP00		Reserved	
100	CSR100		Bus Timeout	
100	CSR100		Pasarvad	
101	CSR101		Reserved	
102	CSR102		Deserved	+
103	CSR103		Deserved	+
104	CSR104		Deserved	
105	CSR105		Deserved	
106	CSR106		Reserved Deserved	
107	CSK10/	uuuu uuuu	Keservea	

Table7.2 Configuration of Control and Status register

RAP Addr	Symbol	Default Value	Comments		
108	CSR108	uuuu uuuu	Reserved		
109	CSR109	uuuu uuuu	Reserved		
110	CSR110	uuuu uuuu	Reserved		
111	CSR111	uuuu uuuu	Reserved		
112	CSR112	uuuu uuuu	Missed Frame Count	R	
113	CSR113	uuuu uuuu	Reserved		
114	CSR114	uuuu uuuu	Received Collision Count	R	
115	CSR115	uuuu uuuu	Reserved		
116	CSR116	0000 0000	On Now Miscellaneous S		
117	CSR117	uuuu uuuu	Reserved		
118	CSR118	uuuu uuuu	Reserved		
119	CSR119	uuuu 0105	Reserved		
120	CSR120	uuuu uuuu	Reserved		
121	CSR121	uuuu uuuu	Reserved		
122	CSR122	uuuu 0000	Receive Frame Alignment Control	S	
123	CSR123	uuuu uuuu	Reserved		
124	CSR124	uuuu 0000	Test Register 1	Т	
125	CSR125	003c 0060	MAC Enhanced Configuration Control	Т	
126	CSR126	uuuu uuuu	Reserved		
127	CSR127	uuuu uuuu	Reserved		

Table7.2 Configuration of Control and Status register

c.

Table7.3 shows a configuration of the bus configuration register. BCR sets address of BCR to RAP and accesses from BDP.

			Name		Programmability	
RAP	Mnemonic	Default			EEPRO	
0	MEDDA	00051	Reserved		M	
0	MSNDA	0005h	Reserved	No	No	
1	MSWKA	00031	Missellene and Configuration	NO	NO No.	
2		0002n	Miscellaneous Configuration	Yes	Yes	
3	Keserved	N/A		NO	NO V	
4	LED0	00000		Yes	Yes	
5	LEDI	0084h		Yes	Yes	
6	LED2	0088h	LED2 Status	Yes	Yes	
7	LED3	0090h	LED3 Status	Yes	Yes	
8	Reserved	N/A	Reserved	No	No	
9	FDC	0000h	Full-Duplex Control	Yes	Yes	
10-15	Reserved	N/A	Reserved	No	No	
16	IOBASEL	N/A	Reserved	No	No	
17	IOBASEU	N/A	Reserved	No	No	
18	BSBC	9001h	Burst and Bus Control	Yes	Yes	
19	EECAS	0002h	EEPROM Control and Status	Yes	No	
20	SWS	0000h	Software Style	Yes	No	
21	INTCON	N/A	Reserved		No	
22	PCILAT	FF06h	PCI Latency	Yes	Yes	
23	PCISID	0000h	PCI Subsystem ID		Yes	
24	PCISVID	0000h	PCI Subsystem Vendor ID		Yes	
25	SRAMSIZ	0000h	SRAM Size	Yes	Yes	
26	SRAMB	0000h	SRAM Boundary	Yes	Yes	
27	SRAMIC	0000h	SRAM Interface Control	Yes	Yes	
28	EBADDRL	N/A	Expansion Bus Address Lower	Yes	No	
29	EBADDRU	N/A	Expansion Bus Address Upper	Yes	No	
30	EBD	N/A	Expansion Bus Data Port	Yes	No	
31	STVAL	FFFFh	Software Timer Value	Yes	No	
32	MIICAS	0000h	PHY Control and Status	Yes	Yes	
33	MIIADDR	0000h	PHY Address	Yes	Yes	
34	MIIMDR	N/A	PHY Management Data	Yes	No	
35	PCIVID	1022h	PCI Vendor ID	No	Yes	
36	PMC_A	C811h	PCI Power Management Capabilities (PMC) Alias Register	No	Yes	
37	DATA0	0000h	PCI DATA Register Zero Alias Register	No	Yes	
38	DATA1	0000h	PCI DATA Register One Alias Register	No	Yes	
39	DATA2	0000h	PCI DATA Register Two Alias Register	No	Yes	
40	DATA3	0000h	PCI DATA Register Three Alias Register		Yes	

Table 7.3 Configuration of the bus configuration register

RAP Mnemonic Default			Name		Programmability	
		Default			EEPRO M	
41	DATA4	0000h	PCI DATA Register Four Alias Register	No	Yes	
42	DATA5	0000h	PCI DATA Register Five Alias Register	No	Yes	
43	DATA6	0000h	PCI DATA Register Six Alias Register	No	Yes	
44	DATA7	0000h	PCI DATA Register Seven Alias Register	No	Yes	
45	PMR1	N/A	Pattern Matching Register 1		No	
46	PMR2	N/A	Pattern Matching Register 2		No	
47	PMR3	N/A	Pattern Matching Register 3		No	
48	Reserved	0000h	Reserved (for Am79C975)		Yes*	
49	Reserved	0000h	Reserved (for Am79C975)		Yes*	
50	Reserved	0000h	Reserved (for Am79C975)	Yes*	Yes*	
51	Reserved	0000h	Reserved (for Am79C975)		Yes*	
52	Reserved	0000h	Reserved (for Am79C975)		Yes*	
53	Reserved	0000h	Reserved (for Am79C975)		Yes*	
54	Reserved	0000h	Reserved (for Am79C975)		Yes*	

Table7.3 Configuration of the bus configuration register

4. Ethernet Line Monitor LED(CN7-LED1, CN7-LED2, LED14 to LED15)

LEDs (CN7-LED1, CN7-LED2, LED14 to LED15) indicate the line condition of Ethernet. Function of each LED is as follows.

(CN7-LED1)

This LED indicates that the line is normally connected.

When lit, the line is normally connected.

(CN7-LED2)

This LED indicates the state of reception of the Solution Engine.

When lit, packet is being received.

(LED14)

This LED does not light in initial state.

(LED15)

This LED indicates the state of transmission of the Solution Engine.

When lit, packet is being transmitted.

4. RJ-45 Connector (CN7) Pin Assignments

Figure 7.3 shows the pin assignments and functions of RJ-45 connector.

Figure 7.3 RJ-45 connector

7.2. Super I/O control

7.2.1. Block Diagram

Figure 7.4 shows a block diagram of the Super I/O control block.

The Super I/O control block has a controller (M1543C B1 manufactured by ALi). The Super

I/O control block provides various input device-interface.

The Super I/O controller has the following functions.

- (1) PCI device
- ISA bus interface (PCI to ISA Bridge)
- IDE interface (IDE Master M5229)
- USB interface (USB M5237)
- Power management unit (PMU M7101)
- (2) Super I/O
- Serial interface (UART1, UART3)
- Parallel interface (Parallel Port)
- RTC (Lithium battery can be connected)
- Keyboard interface (PS2)
- Mouse interface (PS2)
- FIR interface (UART2)
- FDD interface (FDC)

The Super I/O control block has a 14.3181MHz crystal oscillator (OSC1) and 48MHz crystal oscillator (OSC5) as the operation clock.

Transfer speed (baud rate) of serial interface is generated based on 1.8462MHz.

The Super I/O control block has a 32.768KHz crystal oscillator for RTC(×2).

Figure 7.4 Super I/O control block

7.2.2. Super I/O controller

To use various kinds of M1543C B1-embedded modules, it is necessary to set configuration data (base address and etc.) to M1543C B1.

Set M1543C B1 configuration data as follows.

This configuration data includes using/not using each of modules, interruption allocation and base address setting of modules of PCI device and Super I/O.

(1) Configuration of PCI device

Configuration of PCI device is performed by configuration cycle of PCI bus.

For data of configuration register of each device, refer to SuperI/O (M1543C B1) manual.

PCI device number of each device is as follows.

Device name	Device No.	Remarks
ISA bus interface	H'2	IDSEL=AD18
IDE interface	H'B	IDSEL=AD27
USB interface	H'F	IDSEL=AD31
Power management unit	H'C	IDSEL=AD28

(2) Configuration of SuperI/O

Perform configuration of SuperI/O as follows.

Address described below is address of PCI I/O area.

1. Write 0x51 and 0x23 to CONFIG PORT(0x000003F0) twice.

By this, FDC37C935A enters into configuration data setting mode.

- 2. Set INDEX to INDEX PORT(0x000003F0) and set configuration data from DATA PORT(0x000003F1).
- 3. After setting configuration data, go out of configuration data setting mode by writing 0xBB to CONFIG PORT.

Refer to manual of super I/O (M1543C B1) for details on configuration data.

7.2.3. Serial Controller

1. Register Map

Table 7.4 lists the memory map of M1543C B1 super I/O serial controller. Base address initial value of serial controller register is UART1: h'03F8, UART3: h'02F8. Set the configuration data as shown in section 7.2.2, "SuperI/O Controller".

Channel	Address	R/W	DLAB	Register name
	h'0(h'000003F8)	R	0	RBR(Receiver Buffer Register)
	h'0(h'000003F8)	W	0	THR(Transmitter Holding Register)
	h'0(h'000003F8)	W	1	DLL(Divisor Latch LSB)
	h'1(h'000003F9)	W	1	DLM(Divisor Latch MSB)
	h'1(h'000003F9)	R/W	0	IER(Interrupt Enable Register)
UART1	h'2(h'000003FA)	R	Х	IIR(Interrupt Identification Register)
*(CN3)	h'2(h'000003FA)	W	Х	FCR(FIFO Control Register)
	h'3(h'000003FB)	R/W	Х	LCR(Line Control Register)
	h'4(h'000003FC)	R/W	Х	MCR(Modem Control Register)
	h'5(h'000003FD)	R/W	Х	LSR(Line Status Register)
	h'6(h'000003FE)	R/W	Х	MSR(Modem Status Register)
	h'7(h'000003FF)	R/W	Х	SCR(Scratch Register)
	h'0(h'000002F8)	R	0	RBR(Receiver Buffer Register)
	h'0(h'000002F8)	W	0	THR(Transmitter Holding Register)
	h'0(h'000002F8)	W	1	DLL(Divisor Latch LSB)
	h'1(h'000002F9)	W	1	DLM(Divisor Latch MSB)
	h'1(h'000002F9)	R/W	0	IER(Interrupt Enable Register)
UART3	h'2(h'000002FA)	R	Х	IIR(Interrupt Identification Register)
*(CN12)	h'2(h'000002FA)	W	Х	FCR(FIFO Control Register)
	h'3(h'000002FB)	R/W	Х	LCR(Line Control Register)
	h'4(h'000002FC)	R/W	Х	MCR(Modem Control Register)
	h'5(h'000002FD)	R/W	Х	LSR(Line Status Register)
	h'6(h'000002FE)	R/W	X	MSR(Modem Status Register)
	h'7(h'000002FF)	R/W	Х	SCR(Scratch Register)

Table 7.4 M1543C B1 Super I/O serial controller register map

*DLAB is bit7 of "LCR". Don't care X.

* (): Serial interface connector section

2. 9-pin D-sub connector (CN3) pin assignment

$ \bigcirc \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Pin No.	Pin Name	I/O	Function	
1	CD	Ι	Carrier Detect	
2 RxD I Receive Data				
3	TxD	0	Transmit Data	
4	DTR	0	Data Terminal Ready	
5	GND	-	Ground	
6	DSR	Ι	Data Set Ready	
7	RTS	0	Request To Send	
8	CTS	Ι	Clear To Send	
9	RI	Ι	Ring Indicator	

Figure 7.5 9-pin D-SUB connector(CN3) pin assignment

2. 10-pin connector (CN12) pin assignment

Conn	Connector Model Name: HIF3C-10PA-2.54DSA					
	$ \begin{bmatrix} 1 & 3 & 5 & 7 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 2 & 4 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $					
Pin No.	Pin Name	I/O	Function			
1	CD	Ι	Carrier Detect			
2	RxD	Ι	Receive Data			
3	TxD	0	Transmit Data			
4	DTR	0	Data Terminal Ready			
5	GND	-	Ground			
6	DSR	Ι	Data Set Ready			
7	RTS	0	Request To Send			
8	CTS	Ι	Clear To Send			
9	RI	Ι	Ring Indicator			
10	NC	-	No Connect			

Figure 7.6 10-pin connector (CN12) pin assignment

7.2.4. Parallel controller

1. Register map

Table7.5 (1) and (2) list a memory map of IEEE 1284 parallel controller register of M1543C

B1 super I/O controller.

Base address initial value of parallel controller register is h'378. Set the configuration data as shown in section 7.2.2, "SuperI/O controller" to change base address.

	Compatib	le Parallel Port	Enhanced Parallel Port(EPP)		
Address	Register	gister Register		Description	
	Name	Description	Name	Description	
h'0(h'00000378)	DTP	Data Port	DTP	Data Port	
h'1(h'00000379)	STP	Status Port	STP	Status Port	
h'2(h'0000037A)	CTP	Control Port	CTP	Control Port	
h'3(h'0000037B)			ADDR	EPP Address Port	
h'4(h'0000037C)			DATA0	EPP Data Port0	
h'5(h'0000037D)			DATA1	EPP Data Port1	
h'6(h'0000037E)			DATA2	EPP Data Port2	
h'7(h'0000037F)			DATA3	EPP Data Port3	

Table 7.5 (1) Parallel port register

Table7.5(2) Parallel port register

	E	Extended Capacities Parallel Port(EPC)					
Address	Register Name	Description	EPC MODES				
h'000(h'00000378)	data	Data Register	000-001				
	ecpAFifo	ECP FIFO(Address)	011				
h'001(h'00000379)	dsr	Status Register	All				
h'002(h'0000037A)	dcr	Control Register	All				
h'400(h'00000778)	cFifo	Parallel Port Data FIFO	010				
	ecpFio	ECP FIFO(Data)	011				
	tFifo	Test FIFO	110				
	cofigA	Configuration RegisterA	111				
h'401(h'00000779)	cnfigB	Configurationj RegisterB	111				
h'402(h'0000077A)	ecr	Extended Control Register	All				

2. 25 pin D-sub parallel connector (CN4) pin assignment

Table7.6 lists pin assignments and functions of 25-pin D-sub connector (CN4).

Pin No	Signal	I/O	Remarks
	name		
1	/STROBE	I/O	/STB, /WRITE
2	D0	I/O	PD0
3	D1	I/O	PD1
4	D2	I/O	PD2
5	D3	I/O	PD3
6	D4	I/O	PD4
7	D5	I/O	PD5
8	D6	I/O	PD6
9	D7	I/O	PD7
10	/ACK	Ι	/ACK
11	BUSY	Ι	Busy
12	PF	Ι	PE
13	SLCT	Ι	SLCT
14	/AUTOFD	I/O	/AFD, /DSTRB
15	/ERR	Ι	/ERR
16	/INIT	I/O	/INIT
17	/SLCTin	I/O	/SLIN, /ASTRB
18	GND		
19	GND		
20	GND		
21	GND		
22	GND		
23	GND		
24	GND		
25	GND		

Table7.6 25-pin D-sub parallel connector (CN4) pin assignment

Figure 7.7 25 pin D-sub parallel connector(CN4)

7.2.5. Keyboard /Mouse controller

1. keyboard(KBC) register map

Table7.7 lists a register map of a keyboard controller(KBC).Base address initial value of the keyboard controller register is h'60.Set the configuration data as section 7.2.2, "SuperI/O controller".

Table 7.7	keyboard	controller	(KBC)	register	map

Adress	Re	ad	Write		
Address	Register Name	Description	Register Name	Description	
h'00000060	DBBOUT	DBBOUT	DTP	F1 Clear(Data)	
h'00000064	STATUS	STATUS	STP	F1 Set(Command)	

2. Keyboard/Mouse interface connector (CN5) pin assignment

Figure 7.8 shows pin assignments and functions of a keyboard/mouse interface connector (CN5).

			Pin No.	Signal	I/O	Remark
Connecter Model Name: MH11061-D2			1	MDAT	I/O	
			2	N.C	-	Reserved
CN5			3	GND		
			4	+5V		
			5	MCLK	I/O	
	∕०∏०∖		6	NC	_	Reserved
		Top: Mouse		1.00		
		Top: Mouse		Keyboard	connector pir	n assignment
		Top: Mouse	Pin No.	Keyboard Signal	connector pir	n assignment Remark
		Top: Mouse Bottom: Keyboard	Pin No.	Keyboard Signal KBDAT	connector pir	n assignment Remark
		Top: Mouse Bottom: Keyboard	Pin No. 1 2	Keyboard Signal KBDAT N.C	connector pir	n assignment Remark Reserved
		Top: Mouse Bottom: Keyboard	Pin No. 1 2 3	Keyboard Signal KBDAT N.C GND	connector pir	n assignment Remark Reserved
	o l o o o o o o o o o o o o o o o o o o	Top: Mouse Bottom: Keyboard	Pin No. 1 2 3 4	Keyboard Signal KBDAT N.C GND +5V	connector pir I/O I/O - -	n assignment Remark Reserved
Во	oard side	Top: Mouse Bottom: Keyboard	Pin No. 1 2 3 4 5	Keyboard Signal KBDAT N.C GND +5V KBCLK	connector pir I/O I/O - - - I/O	n assignment Remark Reserved

Figure 7.8 Keyboard/mouse interface connector(CN5)

7.2.6. RTC controller

1. Register map

Table 7.8 lists the register map of RTC controller.

Base address initial value of RTC register address is h'70.

Base address initial value of RTC register address cannot be changed.

Table7.8 Register map of RTC controller

Address	Register Name
h'0000070	Address Register
h'00000071	Data Register

A 11	Register Set			
Address	Register Name	Description		
h'00	SEC	Seconds		
h'01	SEC ALM	Seconds Alarm		
h'02	MIN	Minutes		
h'03	MIN ALM	Minutes Alarm		
h'04	HR	Hours		
h'05	HR ALM	Hours Alarm		
h'06	DOW	Day of Week		
h'07	DOM	Date of Month		
h'08	MON	Month		
h'09	YEAR	Year		
h'0A	CRA	Control Register A		
h'0B	CRB	Control Register B		
h'0C	CRC Control Register C			
h'0D	CRD Control Register D			
h'0E - h'FF	-	General-purpose RAM		

Table 7.8 Register map of RTC controller

7.2.7. Floppy disk controller

1. Register map

Table7.10 lists the register map of a super I/O floppy disk controller(FDC).Base address initial value of the SuperI/O floppy disk controller is h'3F0.Set configuration data shown in section 7.2.2, "SuperI/O controller" to change base address.

		Read	Write		
Address	Register Name	Description	Register Name	Description	
h'000003F0	SRA	Status RegisterA	-		
h'000003F1	SRB	Status RegisterB	-		
h'000003F2	DOR	Digital Output Register	DOR	Digital Output Register	
h'000003F3	TDR	Tape Driver Register	TDR	Tape Driver Register	
h'000003F4	MSR	Main Status Register	DSR	Data Rate Select Register	
h'000003F5	FIFO	Data Register	FIFO	Data Register	
h'000003F6	-	Reserved	-	Reserved	
h'000003F7	DIR	Digital Input Register	CCR	Configuration Control	
				Register	

Table 7.10 Register map of the floppy disk controller(FDC)

2. Pin assignment of a floppy disk interface connector(CN15)

Table 7.11 lists pin assignments of the floppy disk interface connector pin (CN15).

		0	11	•	I ,		
Pin	Signal name	I/O	Remarks	Pin	Signal name	I/O	Remarks
No.				No.			
1	GND			18	DIRECTION SELECT	0	/DIR
2	MODE SELECT	0	DENSEL	19	GND		
3	GND			20	STEP	0	/STEP
4	OPEN			21	GND		
5	GND			22	WRITE DATA	0	/WDATA
6	DRATE0	0	DRATE0	23	GND		
7	GND			24	WRITE GATE	0	/WGATE
8	INDEX	Ι	/INDEX	25	GND		
9	GND			26	TRACK 00	Ι	/TRK0
10	MOTOR ON 0	0	/MTR0	27	GND		
11	GND			28	WRITE PROTECT	Ι	/WP
12	DRIVE SELECT1	0	/DR1	29	GND		
13	GND			30	READ DATA	Ι	/RDATA
14	DRIVE SELECT0	0	/DR0	31	GND		
15	GND			32	SIDE ONE SELECT	0	/HDSEL
16	MOTOR ON 1	0	/MTR1	33	GND		
17	GND			34	DISK CHANGE	Ι	/DSKCHG

Table 7.11 Pin assignment of the floppy disk interface connector pin(CN15)

Figure 7.9 floppy disk interface pin connector(CN15)

7.2.8. IDE controller

1. Register map

Table7.12 lists the IDE controller register map of super I/O interface.

Base address initial value of IDE controller register address is h'170(secondary) and h'1F0(primary).

Set configuration data shown in section 7.2.2, "SuperI/O controller" to change base address.

Addreas	Bank1 Register Set					
Addless	Register Name	Description				
h'170	- Task File Register(Secondary)					
h'1F0	- Task File Register(Primary)					
h'374	-	MISC. AT Register(Secondary)				
h'3F4	-	MISC. AT Register(Primary)				

Table 7.12 IDE controller register map

2. 40-pin connector (CN13, Cn14) pin assignment

Table7.13 shows pin assignments of 40-pin connector(CN13,CN14).

		6	1		
Pin No.	Signal name	I/O	Pin No.	Signal name	I/O
1	RESET	0	21	DREQ	Ι
2	GND		22	GND	
3	D7	I/O	23	/DIOW	0
4	D8	I/O	24	GND	
5	D6	I/O	25	/DIOR	0
6	D9	I/O	26	GND	
7	D5	I/O	27	IORDY	Ι
8	D10	I/O	28	CSEL	0
9	D4	I/O	29	/DMAACK	0
10	D11	I/O	30	GND	
11	D3	I/O	31	IRQ	Ι
12	D12	I/O	32	/IOCS16	Ι
13	IRQ	I/O	33	A1	0
14	D13	I/O	34	/PDIAG	Ι
15	D1	I/O	35	A0	0
16	D14	I/O	36	A2	0
17	D0	I/O	37	/CS0	0
18	D15	I/O	38	/CS1	0
19	GND	I/O	39	/DASP	I/O
20	KEY		40	GND	

Table7.13 Pin assignment of 40-pin connector (CN13, CN14)

Figure 7.10 40-pin connector(CN6)

7.2.9. USB control

1. Register map

Table7.14(1) and (2) show the USB controller register map of SuperI/O interface. Base address initial value of USB control register address is h'00000000. Set configuration data shown in section 7.2.2, "SuperI/O controller" to change base address.

Address	Register Name	R/W	Default Value
h'00	HcRevision	R	h'00000110
h'04	HcControl	R/W	h'00000000
h'08	HcCommandStatus	R/W	h'00000000
h'0C	HcInterruptStatus	R/W	h'00000000
h'10	HcInterruptEnable	R/W	h'00000000
h'14	HcInterruptDisable	R/W	h'00000000
h'18	HcHCCA	R/W	h'00000000
h'1C	HcPeriodCurrentED	R/W	h'00000000
h'20	HcControlHeadED	R/W	h'00000000
h'24	HcControlCurrentED	R/W	h'00000000
h'28	HcBulkHeadED	R/W	h'00000000
h'2C	HcBulkCurrentED	R/W	h'00000000
h'30	HcDoneHead	R/W	h'00000000
h'34	HcFmInterval	R/W	h'00002EDF
h'38	HcFrameRemaining	R/W	h'00000000
h'3C	HcFmNumber	R/W	h'00000000
h'40	HcPeriodicStart	R/W	h'00000000
h'44	HcLSThreshold	R/W	h'00000000
h'19	HaphDagarintarA	D/W	h'01000002
11 40	HCKIIDescriptorA	K/ W	h'01000003
h'4C	HcRhDescriptorB	R/W	h'00000000
h'50	HcRhStatus	R/W	h'00000000
h'54	HcRhPortStatus0	R/W	h'00000000
h'58	HcRhPortStatus1	R/W	h'00000000
h'5C	HcRhPortStatus2	R/W	h'00000000

Table 7.14 (1)Register map of USB controller

Table7.14 (2) Register map of USB controller

Address	Register Name	R/W	Default Value
h'100	HceControl Register	R/W	h'00000000
h'104	HceInput Register	R/W	h'000000xx
h'108	HceOutput Register	R/W	h'000000xx
h'10C	HceStatus Register	R/W	h'00000000

2. Pin assignment of USB interface connector(CN6)

Figure 7.11 shows pin assignments and functions of USB interface connector(CN6).

Figure 7.11 USB interface connector(CN6)

7.3. PCMCIA Control

1. Block description

Figure7.12 shows a PCMCIA control block. As shown in figure7.13, the PCMCIA control block has a controller (Marubun-supplied MR-SHPC-01 V2), a 68-pin IC card connector (molex-supplied 53409-6810) and a power control IC(TI-supplied TPS22111DB). The PCMCIA control block provides ATA card-interface and I/O card-interface via a 68-pin IC card connector.

This controller provides system-interface with ATA card based on PC card standard 97 and I/O card. This controller has following features.

- Support 68-pin card slot based on PC card standard97
- 2 memory windows and one I/O window incorporated
- Card access timing adjustment function incorporated
- Read /Write buffer incorporated
- Endian control on-chip circuit
- Support 5.0V/3.3V card
- External buffer is not necessary
- Interrupt steering function incorporated
- Power-down function incorporated
- Suspend function incorporated

Figure7.12 PCMCIA I/F control block

2. 68-pin IC Card Connector (CN17) Pin Assignments

Table 7.15 lists the pin assignments of the 68-pin IC card connector (CN17).

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	GND	18	CARD_Vpp	35	GND	52	CARD_Vpp
2	PD3	19	PA16	36	/P_CD1	53	PA22
3	PD4	20	PA15	37	PD11	54	PA23
4	PD5	21	PA12	38	PD12	55	PA24
5	PD6	22	PA7	39	PD13	56	PA25
6	PD7	23	PA6	40	PD14	57	/P_VS2
7	/P_CE1	24	PA5	41	PD15	58	/P_RESET
8	PA10	25	PA4	42	/P_CE2	59	/P_WAIT
9	/P_OE	26	PA3	43	/P_VS1	60	/P_INPACK
10	PA11	27	PA2	44	/P_IORD	61	/P_REG
11	PA9	28	PA1	45	/P_IOWR	62	P_BVD2
12	PA8	29	PA0	46	PA17	63	P_BVD1
13	PA13	30	PD0	47	PA18	64	PD8
14	PA14	31	PD1	48	PA19	65	PD9
15	/P_WE	32	PD2	49	PA20	66	PD10
16	/P_RDY	33	/P_IOIS16	50	PA21	67	/P_CD2
17	CARD_Vcc	34	GND	51	CARD_Vcc	68	GND

Table 7.15 Pin Assignments of 68-pin IC Connector (CN17)

Table 7.16 shows a memory map of PCMCIA control register. All registers should be accessed in word size.

Address	Initial value	Register name	Function
h'B83FFFE4 (h'183FFFE4*1*2)	H'0000	Mode register	Set operating mode of PCIC
h'B83FFFE6 (h'183FFFE6*1*2)	H'000C	Option register	Control option function
h'B83FFFE8 (h'183FFFE8*1*2)	H'03BF	Card status register	Monitor input signal from card
h'B83FFFEA (h'183FFFEA*1*2)	H'0000	Interrupt source register	Show interrupt occurrence source
h'B83FFFEC (h'183FFFEC*1*2)	H'0000	Interrupt control register	Control interrupt occurrence condition
h'B83FFFEE (h'183FFFEE*1*2)	H'0000	Card power control register	Control card power and low power consumption
h'B83FFFF0 (h'183FFFF0*1*2)	H'7FC0	Memory window 0 Control register 1	Control system address area for memory access
h'B83FFFF2 (h'183FFFF2*1*2)	H'7FC0	Memory window 1 Control register 1	Control system address area for memory access
h'B83FFFF4 (h'183FFFF4*1*2)	H'7FC0	I/O window Control register 1	Control system address area for I/O access
h'B83FFFF6 (h'183FFFF6*1*2)	H'0000	Memory window 0 Control register 2	Control access condition to card
h'B83FFFF8 (h'183FFFF8*1*2)	H'0000	Memory window 1 Control register 2	Control access condition to card
h'B83FFFFA (h'183FFFFA*1*2)	H'0000	I/O window Control register 2	Control access condition to card
h'B83FFFFC (h'183FFFFC*1*2)	H'0000	Card control register	Control card mode
h'B83FFFFE (h'183FFFFE*1*2)	H'5333	Chip information register	Chip Revision

Table7.16 PCMCIA Control Register

*1 Physical address when MMU is used

*2 When MMU is used, do not cache at the time of TLB entry (TLB entry C-bit=0).

7.4. Memory Block

EPROM and FlashROM are placed at area 0, and SDRAM is placed at area3.

Figure 7.13 shows a memory map of area 0. As shown in figure 7.13, the assignment of EPROM (M7, M8) and FlashROM (M1, M2) can be changed depending on the state of SW5-5, SW5-4 and SW5-3.

EPROM and FlashROM are placed at area 0 which bus width is 32-bit.

Two EPROM and two FlashROM with 16-bit bus width are used to connect to 32-bit bus. Assignment of EPROM and FlashROM is as follows.

High order 16 bits: M7, M1

Low order 16 bits: M8, M2

Figure 7.13 Area 0 memory map

7.5. General-purpose Switch

Figure 7.14 shows a configuration of general-purpose switches. SW6 to SW9 can detect ON or OFF state from the registers (h'B9000000(h'19000000 *1*2) and h'B9000002(h'19000002 *1 *2)) allocated on the memory map. This switch is useful for setting IP addresses.

Read addresses h'B9000000 (h'19000000 *1*2) and h'B9000002 (h'19000002 *1*2) by 16bit access. This register is a read only register.

*1 Physical address when MMU is used

*2 When MMU is used, do not cache at the time of TLB entry (TLB entry C-bit=0).

Figure 7.14 Configuration of General-purpose Switches

Figure 7.15 shows the configuration of the 8-bit LED. LED1 to LED8 are capable of controlling LED ON/OFF by writing data to the register (h'BA000000(h'1A000000*1*2)) allocated on the memory map. These LEDs are useful for checking the operation of programs.

Read and write to address h'BA000000(h'1A000000 *1 *2) in 16-bit width. 1and 0 written to each register become invalid because nothing is connected to D7-D0.

*1 Physical address when MMU is used

*2 When MMU is used, do not cache at the time of TLB entry (TLB entry C-bit=0).

Figure 7.15 Configuration of 8-bit LED

8. Interrupt Controller

The SolutionEngine has the interrupt controller FPGA1 (U17) that determines the priority of interrupts output from each device.

Table8.1 lists the outputs of IRL3-IRL0 signals of SH controlled by the interrupt controller.

No.	Interrupt request source	Signal name	Interrupt level	SH7751R pin state IRL[3:0]	Other
1	Abort switch/ ROM emulator	NMI	-	-	
2	Expansion slot	~SLOT_IRQ8	15	0000	Expansion slot~IRQ8 signal
3	Expansion slot	~SLOT_IRQ7	14	0001	Expansion slot~IRQ7 signal
4	MR-SHPC-01-IRQ2	~PCIC_SIRQ2	13	0010	MR-SHPC-01 register setting
5	Super I/O	INTR	12	0011	Super I/O
6	Expansion slot	~SLOT_IRQ6	11	0100	Expansion slot~IRQ6 signal
7	Expansion slot	~SLOT_IRQ5	10	0101	Expansion slot~IRQ5 signal
8	MR-SHPC-01-IRQ1	~PCIC_SIRQ1	9	0110	MR-SHPC-01 register setting
9	Not defined	-	8	0111	
10	Expansion slot	~SLOT_IRQ4	7	1000	Expansion slot~IRQ4 signal
11	Expansion slot	~SLOT_IRQ3	6	1001	Expansion slot~IRQ3 signal
12	Not defined	-	5	1010	
13	Expansion slot	~SLOT_IRQ2	4	1011	Expansion slot~IRQ2 signal
14	Not defined	-	3	1100	
15	Expansion slot	~SLOT_IRQ1	2	1101	Expansion slot~IRQ1 signal
16	MR-SHPC-01-IRQ0	~PCIC_SIRQ0	1	1110	MR-SHPC-01 register setting

Table8.1 Interrupt Level Cross Reference Table

9. Expansion Slot (CN1)

9.1. Expansion Slot Pin Assignments

Table 9.1 lists the pin assignments of the expansion slot.

SH bus signals (data bus, address bus and control signals) are connected to the expansion slot

via buffers (74ALVCH16244T, 245T). Electrical level is 3.3V. When LSI or the IC that need 5V

interface are mounted, mount the IC with $3V \rightarrow 5V$ interface on the daughter board.

The symbols listed in Table 9.1 have the following meanings.

OUT: Output, IN: Input, BO: Buffer output, BI: Buffer input, P-UP: Pull up

Pin Pin I/O No. Туре Remarks No. Туре I/O Remarks Assignment Assignment A1 GND A36 A16 во OUT CKIO A2 BO OUT A37 A18 во OUT A38 A20 во OUT A3 GND во OUT Т A39 A22 Α4 D0 I/O OUT A40 A24 BO D2 Т I/O A5 A6 D4 Т I/O A41 GND A7 D6 Т I/O A42 /DACK0 во OUT A8 GND A43 /DREQ0 BI,P-UP IN -A9 D8 Т I/O A44 GND A10 D10 Т I/O A45 /CS0 во OUT A11 D12 Т I/O A46 /CS2 во OUT A47 /CS4 во OUT Т A12 D14 I/OA13 GND A48 /CS6 во OUT A14 D16 Т A49 GND A15 D18 Т I/OA50 /RD во OUT A16 D20 Т I/O A51 GND A52 A17 D22 Т I/O /WE0 во OUT GND A53 во OUT A18 /WE2 A19 D24 Т I/O A54 GND A20 Т I/O D26 A55 /WAIT0 BI,P-UP IN A21 D28 Т I/O A56 /WAIT2 BI,P-UP IN A22 D30 Т A57 GND I/OA23 3.3V /IRQ1 BI,P-UP A58 IN A24 3.3V A59 /IRQ3 BI,P-UP IN A25 Option Option Spare pin A60 /IRQ5 BI,P-UP IN NC0 /IRQ7 BI,P-UP A26 A0 во OUT A61 IN +5V A62 A27 A2 во OUT +5V A63 A28 A4 во OUT A64 NC1 A29 A6 во OUT Option Option Reserve во A30 GND _ A65 /RES OUT A66 A+5VA31 во A8 OUT A32 во OUT A67 A+5V_ A10 NC3 A68 OUT A33 A12 во Option Option Spare pin A 69 NC5 A34 A14 BO OUT Option Option Spare pin A35 GND -A70 NC7 Option Option Spare pin

Table 9.1 Expansion Slot Pin Assignments (Column A)

No.	Pin assignment	Туре	I/O	Remarks	No.	Pin assignment	Туре	I/O	Remarks
B1	GND	-	-		B36	A17	во	OUT	
B2	GND	-	-		B37	A19	BO	OUT	
В3	GND	-	-		B38	A21	BO	OUT	
B4	D1	Т	I/O		B39	A23	BO	OUT	
B5	D3	Т	I/O		B40	A25	во	OUT	
B6	D5	Т	I/O		B41	GND	-	-	
B7	D7	Т	I/O		B42	/DACK1	BO	OUT	
B8	GND	-	-		B43	/DREQ1	BI,P-UP	IN	
B9	D9	Т	I/O		B44	GND	-	-	
B10	D11	Т	I/O		B45	/CS1	во	OUT	
B11	D13	Т	I/O		B46	/CS3	во	OUT	
B12	D15	Т	I/O		B47	/CS5	во	OUT	
B13	GND	-	-		B48	R/W	во	OUT	
B14	D17	Т	I/O		B49	GND	-	-	
B15	D19	Т	I/O		B50	/BS	во	OUT	
B16	D21	Т	I/O		B51	GND	-	-	
B17	D23	Т	I/O		B52	/WE1	BO	OUT	
B18	GND	-	-		B53	/WE3	во	OUT	
B19	D25	Т	I/O		B54	GND	-	-	
B20	D27	Т	I/O		B55	/WAIT1	BI,P-UP	IN	
B21	D29	Т	I/O		B56	/WAIT3	BI,P-UP	IN	
B22	D31	Т	I/O		B57	GND	-	-	
B23	3.3V	-	-		B58	/IRQ2	BI,P-UP	IN	
B24	3.3V	-	-		B59	/IRQ4	BI,P-UP	IN	
B25	3.3V	-	-		B60	/IRQ6	BI,P-UP	IN	
B26	A1	BO	OUT		B61	/IRQ8	BI,P-UP	IN	
B27	A3	BO	OUT		B62	+5V	-	-	
B28	A5	BO	OUT		B63	+5V	-	-	
B29	A7	во	OUT		B64	+5V	-	-	
B30	GND	-	-		B65	+5 V	-	-	
B31	A9	во	OUT		B66	+5V	-	-	
B32	A11	BO	OUT		B67	NC2	Option	Option	Spare pin
B33	A13	во	OUT		B68	NC4	Option	Option	Spare pin
B34	A15	BO	OUT		B69	NC6	Option	Option	Spare pin
B35	GND	-	-		B70	NC8	Option	Option	Spare pin

Table 9.2 Expansion Slot Pin Assignments (Column B)

9.2. Expansion Slot Connector Configuration

Figure 9.1 shows a connector configuration of the expansion slot. As shown in Figure 9.1, an additional daughter board can be connected on top of the daughter board by mounting connectors on both sides of the daughter board. Maximum 4 daughter boards can be connected by using the expansion slot.

9.3. Daughter Board Dimensions

Figure 9.2 shows the dimensions of the daughter board to be mounted on the Solution Engine. When a user design a daughter board originally, design the board with dimensions shown in figure 9.2.

Figure 9.2 Daughterboard Dimensions

10. I/O Connector (CN18)

Table10.1 lists the functions of I/O connector (CN18). I/O port, timer output pin and SCI

signals are connected to the I/O connector. Use this connector to control by using the I/O port.

Solution Engine-side connector: 8800-080-170S(KEL)

I/O board-side connector: 8810-080-170L (right angle) (KEL)

/ 8810-080-170S (straight) (KEL)

Pin No.	Signal Name						
1	+3.3V	21	NC	41	+5V	61	NC
2	+3.3V	22	NC	42	+5V	62	NC
3	+3.3V	23	NC	43	NC	63	NC
4	+3.3V	24	NC	44	NC	64	NC
5	RXD0/SCPT0	25	NC	45	NC	65	GND
6	TXD0/SCPT0	26	NC	46	NC	66	GND
7	SCK0/SCPT1	27	GND	47	GND	67	NC
8	NC	28	GND	48	GND	68	NC
9	NC	29	NC	49	NC	69	NC
10	NC	30	NC	50	NC	70	NC
11	GND	31	NC	51	NC	71	GND
12	GND	32	NC	52	NC	72	GND
13	NC	33	NC	53	NC	73	+3.3V
14	NC	34	NC	54	NC	74	+3.3V
15	NC	35	NC	55	NC	75	NC
16	NC	36	NC	56	NC	76	NC
17	GND	37	GND	57	GND	77	NC
18	GND	38	GND	58	GND	78	NC
19	NC	39	+5V	59	GND	79	NC
20	NC	40	+5V	60	GND	80	NC

Table 10.1 I/O Connector Functions

11. Bus Controller Setting

SH7751R bus controller has 21 registers. Set the set values to each of 21 registers by using user programs when using various kinds of Solution Engine hardware. For the bus controller setting, refer to monitor program source (START.SRC) of sample software on the attached CD-ROM.

12. SH 7751R CPU Bus Interface

Table12.1 lists the pin assignment of the SH7751R CPU bus interface (CN20). SH7751R bus signal (data bus, address bus, control signal) is output to CPU bus interface connector directly. These signals can be used for tracing SH7751R signal to the emulator.

Connector Model Name: WR-120PB-VF-1(JAE)

Pin No.	Signal name						
1	Vcc	31	A22	61	Vcc	91	GND
2	Vcc	32	A23	62	Vcc	92	GND
3	NC	33	A24	63	D12	93	/WE2
4	/BS1	34	A25	64	D13	94	/WE3
5	A2	35	A0	65	D14	95	DQM0
6	A3	36	A1	66	D15	96	DQM1
7	A4	37	/CS5	67	D16	97	DQM2
8	A5	38	/CS6	68	D17	98	DQM3
9	GND	39	GND	69	D18	99	/RAS
10	GND	40	GND	70	D19	100	NC
11	A6	41	/CS1	71	GND	101	GND
12	A7	42	/CS4	72	GND	102	GND
13	A8	43	/CS0	73	D20	103	NC
14	A9	44	NC	74	D21	104	NC
15	A10	45	D0	75	D22	105	/CS2
16	A11	46	D1	76	D23	106	/CS3
17	A12	47	D2	77	D24	107	TADPCS
18	A13	48	D3	78	D25	108	NMIN
19	GND	49	GND	79	D26	109	/RSTOUT
20	GND	50	GND	80	D27	110	NMIOUT
21	A14	51	D4	81	GND	111	GND
22	A15	52	D5	82	GND	112	GND
23	A16	53	D6	83	D28	113	NC
24	A17	54	D7	84	D29	114	CKIO
25	A18	55	D8	85	D30	115	NC
26	A19	56	D9	86	D31	116	NC
27	A20	57	D10	87	RDWR	117	NC
28	A21	58	D11	88	/RD	118	NC
29	GND	59	Vcc	89	/WEO	119	Vcc
30	GND	60	Vcc	90	/WE1	120	Vcc

Table12.1 Pin assignment of SH7751R CPU bus interface (CN20)

13. Usage of Monitor Program

13.1. Usage of Monitor Program

1. How to Connect the Host System

Connect the serial port of the host system to CN2 of the Solution Engine via a RS-232C cross cable.

After completion of serial connection, start communications software. Any communication software for personal computer communications can be used (Hyper terminal, Windows terminal and etc.). Set communication software as listed in the table13.1. The transfer rate can be selected with the DIP switch (SW5-1, 5-2) on the Solution Engine. For details, refer to Section 3.1 (4), "DIP Switch for setting baud rate(SW5)". This monitor program outputs CR+LF as a line feed code.

Data communication	8 bit
Parity	None
Stop bit	1 bit
Control flow	Xon/Xoff
Data communication speed	9600, 19200, 38400, 115200 bit/s

Table 13.1 Communication specifications

2. Monitor Program Specifications

Figure 13.1 shows the address map of the monitor program. Do not write at the area used by the monitor program (H'0DF00000-H'0DFFFFF). For more details of each memory area, refer to Section 5, "Memory Map".

h'00000000	Monitor Program	Area0 (ROM area, 32bit bus width)
h'00020000 h'03FFFFFF	Vacant Area	
h'04000000	Expansion Area1	Area1 (Option bus width)
h'08000000	Expansion Area2	Area2 (Option bus width)
h'0C000000	User Area	
h'0DF00000 h'0DFFFFFF	Monitor Program Use Area	Area3 (SDRAM area,
h'0E000000 h'0FFFFFF	Work Memory	64bit bus width)
h'10000000	Peripheral Device Control Register Area	Area 4 (16bit bus width)
h'14000000	Expansion Area 5	Area 5 (Option Bus Area)
h'18000000	Area for PCMCIA	Area 6 (16bit bus width)

Figure 13.1 Memory Map (Real Memory Space)

3. Starting Monitor Program

The following starting message is displayed on the host system screen after connecting the Solution Engine to the host system via a RS232C cross cable and the monitor program is started.

Self Debug	ger Ver x.x n
(C) Copyright 1999-2005.	Hitachi.Ltd. All rights reserved.
	H[elp] for help messages
Ready>	

x.x means monitor program version. n is changed depending on endian.

A: Little endian

B: Big endian

4. Download user program

Use the ml command to transfer the user program to user RAM. Input "ml" in response to a command prompt as follows.

Ready>ml

After inputting the command, the following transfer request message is output from the monitor program, and the message is displayed on the host system screen.

Please Send A S-format Record

When the message is displayed, send the S-format object file by using the file transfer function of the communication software.

Address information is also added to the S-format object file. Allocate the object program according to this address information.

For it is a relocatable file that does not have specified address in object file, specify the offset address with the "ml" command as follows.

The specified address should be within the user area shown in Figure 13.1.

Upon completion of loading into memory, the following message is displayed on the host system screen. (In this example, the program is loaded from address H'AC100000 of area 3.)

Start Addrs = AC100000

End Addrs = AC1000BC

Transfer complete

5. Display and change register contents

Before running the program, set the stack pointer for the program loaded into memory to R15. Because h'CF00000 has already been set to R15, change the setting as follows to set a stack pointer at different location.

Ready >rw r15 CEF0000

After completion of register setting, the information about all registers is displayed as follows and enter into command prompt status.

General Registers			
R0 =00000000	R1 =00000000	R2 =00000000	R3 =00000000
R4 =00000000	R5 =00000000	R6 =00000000	R7 =00000000
R8 =00000000	R9 =00000000	R10=00000000	R11=00000000
R12=00000000	R13=00000000	R14=00000000	R15=0CEF0000
R0_BANK=00000000	R1_BANK=0000000	0 R2_BANK=000000	00 R3_BANK=00000000
R4_BANK=00000000	R5_BANK=0000000	0 R6_BANK=000000	00 R7_BANK=00000000
Control Registers			
SSR=600000E0	SPC=00000000	GBR=00000000	VBR=00000000
Ready >			
6. Dump memory contents

Confirm the command transferred to user memory by using the md command. Input the md command as follows.

Ready >md ac100000

When the md command is executed, the data of the area (address H'AC100000 - H'AC1000FF in this example) of 256 bytes is dumped from the address input on the command line.

AC100000 03 61 21 41 13 62 21 42 23 63 21 43 33 64 21 44	
AC100010 43 65 21 45 53 66 21 46 63 67 21 47 73 68 21 48	
AC100020 83 69 21 49 93 6A 21 4A A3 6B 21 4B B3 6C 21 4C	
AC100030 C3 6D 21 4D D3 6E 21 4E FF C3 1C D0 1C D1 01 21	
AC100040 1C D0 1D D2 01 22 58 00 1F 42 33 4F 43 4F 83 4F	
AC100050 93 4F A3 4F B3 4F C3 4F D3 4F E3 4F F3 4F 32 00	
AC100060 3E 40 42 00 4E 40 82 08 8E 49 92 09 9E 48 A2 08	
AC100070 AE 49 B2 09 BE 48 C2 08 CE 49 D2 09 DE 48 E2 08	
AC100080 EE 49 F2 09 FE 48 F7 4F E7 4F D7 4F C7 4F B7 4F	
AC100090 A7 4F 97 4F 87 4F 47 4F 37 4F 83 0F 0D 31 25 33	
AC1000A0 4C 45 6D 47 09 00 FD AF 09 00 00 00 02 00 00 00	
AC1000B0 00 00 11 0C FF FF 00 00 10 00 11 0C 36 9F EA BB	
AC1000C0 20 50 0A 04 CC 18 41 10 04 CF 28 47 F1 FC 1F AF	
AC1000D0 20 1E 04 43 95 45 D3 A8 79 10 88 C5 97 47 D1 2D	
AC1000E0 82 86 80 70 B3 A2 6A 02 B7 FA 81 72 7D 22 1B B9	
AC1000F0 D0 00 0A 00 98 04 97 AC EA 2F 9C 40 83 18 13 BB	

7. Execute user program

Execute the program transferred to user memory with the g command. Input the g command as follows.

Ready >g ac100000

When the g command is input, h'AC100000 is set to the program counter (PC), and the program is executed from address h'AC100000. When either Ctrl+C key or the Abort switch (SW2) is pressed, the information about all registers is displayed as follows and the user program execution is suspended.

General Registers			
R0 =00000000	R1 =00000000	R2 =00000000	R3 =00000000
R4 =00000000	R5 =00000000	R6 =00000000	R7 =00000000
R8 =00000000	R9 =00000000	R10=00000000	R11=00000000
R12=00000000	R13=00000000	R14=00000000	R15=0CEF0000
R0_BANK=00000000 H	R1_BANK=00000000) R2_BANK=000000	00 R3_BANK=00000000
R4_BANK=00000000 H	R5_BANK=00000000) R6_BANK=000000	00 R7_BANK=00000000
Control Registers			
SSR=600000E0	SPC=AC10003A	GBR=0000000	0 VBR=00000000
SR =700000E1	MD RB BL	M Q I S T = 1 1 1 0	0 0 E 0 1
System Registers			
MACH=00000000	MACL=00000000	PR = 00000000) PC =AC10003A

8. Step user program

Step the program transferred to user memory with the s command.

Input the s command as follows.

Ready >s ac100000

When the s command is executed, instruction of executed address is displayed.

Ready >s ac100000	
AC100000 0009 NOP	
Ready >	

9. Set Breakpoint

Set a breakpoint with the bs command. Input the bs command as follows. The breakpoint is set at address h'AC100010 by inputting the bs command. When the program is executed under this condition, a break is occurred at address h'AC100010 and user program is aborted.

This break is generated by replacing the instruction of the said address with an illegal instruction. It is impossible to break read only memory.

Readv	>bs	ac100010
i touu y	203	ac100010

Use the bi command to disable the breakpoint set previously.

Using the bagor	nmand anablas t	ha braakmaint	dischlad by	the high mond
Using the be con	innanu enables i	пе ргеакропп	. uisabieu by	the bi command

10. Change memory contents

Use the me command to change memory data. Input the me command as follows. If characters other than hexadecimal number are input, the program come out of the me command, and goes into command wait status.

Ready >me ac100000 AC100000 03-AC100001 61-.

11. Writing to the Flash ROM

Use the "fl" command to transfer the user program to user RAM and to write to Flash ROM.

Input the "fl" in command standby mode as follows.

To write to Flash ROM, erase Flash ROM and start writing to Flash ROM.

Figure 13.2 shows the procedure to execute user programs from Flash ROM after completion of writing user programs to Flash ROM.

Offset is necessary. When offset is not used, set offset to 0.

Ready >fl offset

After input, following transfer request message is output from the monitor program and the message is displayed on the host system screen.

Flash ROM data copy to RAM Please Send A S-format Record

After the message is displayed, send the S-format object file by using the file transfer function of communication software.

S-format object file has address information. Place object program according to this address information.

If it is relocatable file which address is not specified in object file, specify offset address with the fl command.

Specify the address within the user area shown in figure 13.1. Following message is displayed on the host system screen after completion of loading to memory.

(In this example, program is loaded from h'A0000000 address of area3)

Start Addrs = A0000000 End Addrs = A00044BE

Transfer complete

Erasion of Flash ROM is started and the following message is displayed.

Flash chip erase:

After completion of erasing Flash ROM, the following message is displayed and writing is started.

Flash chip erase: complete Program :

After completion of writing, command prompt is displayed on the screen.

Program :complete Flash write complete Ready

Figure 13.2 Procedure to write to Flash ROM

13.2. Monitor Program Function List

Table 13.2 lists the commands of the monitor program.

Classification	Command	Description
Host PC Interface	ML(Memory Load)	Download object from the host
Write to Flash ROM	FL(Flash Load)	Write to Flash
	RR(Register Read)	Read all register of SH
Register display	RW(Register Write)	Write to the specific register of SH
	RC(Register Clear)	Clear all register of SH
	ME(Memory Edit)	Edit memory
Mamaan	MD(Memory Dump)	Dump memory
Memory	MF(Memory Fill)	Fill memory
	DA(Disassemble)	Disassemble
	G(Go)	Execute program
	S(Step)	Step program
	BS(Breakpoint Set)	Set breakpoints
Execute Program	BD(Breakpoint Delete)	Delete a breakpoint
	BC(Breakpoint Clear)	Delete all breakpoints
	BE(Breakpoint Enable)	Break at breakpoint
	BI(Break Ignore)	Ignore breakpoint
Other	H(Help)	Describe command format of commands

Table 13.2 List of Monitor Functions

14. Command

Command		Function	
ML (Memory Load)		Load objects from the host.	
Option			
	None		
Format			
	ML (offset address)		
Example:	Example: Ready >ML		
Ready >ML AC000000			
(Note) Program can be loaded by specifying offset addressing only when loaded program does not use			
absolute addressing (only when loaded program is relocatable).			
The operation is not guaranteed when loading a program that executes jumps by absolute addressing,			
by using offset addressing. Therefore, do not use offset addressing but load to linking address.			

Command			Function		
FL(Flash	n Load)		Write	data and programs t	o Flash ROM
Option					
offset	1				
Format					
FL(of	fset)				
Example: Read Write FL comn (1) Make Flash Make Flash RC	ly>FL nand to Flash ROM as fol 1 ROM image on SDRAM DM image on SDRAM by	lows. [⁷ copying Flash R(OM data to th	e first 4-Mbyte area of	the SDRAM address
(2) Download S	S format object file	ile on PC to SDR	AM MOTOR	OI & S format object f	iles should be transferred to the
following SDR	AM address =MOTOROLA	A S format address	AM. MOTOR	op address(H'0c00000))-offset)
Upper 4 bits of	MOTOROLA S format a	ddress are ignored	d.	, and the second s	
(3) Delete Flas	hROM data				
Delete all Flash	h ROM data after the tran	sfer.			
(4) Writing					
Write first 4-M	Ibyte data of the SDRAM	I address to Flash	ROM.		
(5) Changing p	lace between Flash ROM	and EPROM			
Change the pla	ce between EPROM and	Flash ROM by DI	P switch setti	ng after writing. Progr	ams written to Flash ROM can l
by changing th	ne place.				
H'00000000	OTOROLA S Transfer mat object file				
H'00000000			ן ר		Changing
H'003FFFFF	EPROM	EPROM		EPROM	Flash ROM
H'01000000	Copy	Elash ROM		Write	EPROM
H'013FFFFF					
H'0c000000			H'0c000000		
H'0c3FFFFF					
H'0dFFFFFF	SDRAM	SDRAM		SDRAM	SDRAM
	(1)	(2)		(3)	(4)

(offset)

The transfer address for downloading MOTOROLA S format object files to SDRAM can be adjusted by specifying the of on command input. The final Flash ROM address can be specified by adjusting the transfer address.

1. When running the program written to Flash ROM right after power on reset

(1) Place the program at area 0 of SH microcomputer to run the program on Flash ROM. Link the program to place the program at area 0 on MOTOROLA S format object file generation.

(2) It is necessary to set the offset to 0 to download the object generated in process (1). Transfer the object to top address of SDRAM by setting the offset to 0.

Example: Ready>FL 0

2. When writing the data of address H'1000 to address H'0.

(1) MOTOROLA S format object file should be transferred to the following SDRAM address. SDRAM address = MOTOROLA S format address +(SDRAM top address(H'0c000000)-)ffset Specify the offset to write the object of address H'1000 to address H'0. Obtain the offset as follows.

offset = MOTOROLA S format address+SDRAM top address (H'0c000000)-SDRAM address =H'1000+H'c000000-H'c000000 =H'1000

Example: Ready>FL 1000

[NOTE]

(1) Be sure to specify the offset. It is impossible to write normally without specifying the offset.

(2) The object file data of address from H'0000 to H'0FFF is not transferred to user memory when specifying the offset 1000. Flash ROM data is not changed when specifying the offset 1000 and writing the object file with address from H'0000 to H'0FFF to Flash ROM.

Command		Function	
RR (Re	gister Read)	Read all regi	sters.
Option			
	None		
<u>Format</u>			
	RR		
Example:	Ready >RR		

Command		Function	
RW (Re	gister Write)	Writes to the corresponding register.	
Option			
	None		
<u>Format</u>			
	RW <regname> <data></data></regname>		
Example: H	Ready >RW R0 12AB		

Command		Function	
RC (Re	gister Clear)	Clears all registers to 0.	
Option			
	None		
<u>Format</u>			
	RC		
Example:	Ready >RC		

Command		Function	
ME (Me	mory Edit)	Edit memory.	
Option			
	-W,-L	Word access, L	long word access
<u>Format</u>			
	ME <address> (option)</address>		
Example: F	Ready >ME AC000000		
Ready	y >ME AC000000 -W		
Ready	y >ME AC000000 -L		

Command	Function			
MD (Memory Dump)	Dumps memory.			
Option -A	Displays in ASCII code.			
<u>Format</u> MD (start address) (end address)				
Example: Ready >MD				
Ready >MD 0				
Ready >MD 0 200 -A				

Command		Function		
MF (Me	emory Fill)	Fills memory.		
Option				
	- (data)	Fills by specified data.		
Format MF (start address) (end address) (option)				
Example:	Ready >MF			
Read	y >MF AC000000 AC00020	0		
Read	y >MF AC000000 AC00020	0 -55		

Command		Function	
DA (Disassemble)		Disassembles	from the specified address.
Option			
	None		
<u>Format</u>			
	DA (start address)		
Example:	Ready >DA AC000000		

Command	Function
G (Go)	Executes from the specified address.
Option	
None	
Format	
G (start address)	
Example: Ready >G AC000000	

Command	Function
S (Step)	Step from specified address.
Option	
None	
Format	
S (start address)	
Example: Ready >S AC000000	

Command		Function	
BS (Breakpoint Set)		Set breakpoint	
Option			
	None		
<u>Format</u>			
	BS (address)		
Example:	Ready >BS ACC	00000	

Command		Function	
BD (Bre	eak Delete)	Deletes break	cpoints
Option			
	None		
<u>Format</u>			
	BD <address></address>		
Example: H	Ready >BD 45C		

Command		Function	
BC (Break Clear)		Deletes all breakpoints.	
Option			
	None		
<u>Format</u>			
	BC		
Example: F	Ready >BC		

Command		Function	
BE (Break Enable)		Breaks at breakpoints.	
Option			
	None		
<u>Format</u>			
]	BE		
Example: R	eady >BE		

Command		Function	
BI (Break Ignore)		Ignores brea	kpoints.
Option			
	None		
Format			
	BI		
Example:	Ready >BI		

Command					Function		
H (Help))				Describ	bes the	e monitor system commands.
Option							
	í numl	per)			Describ	es co	ncerned items in detail.
Format					•		
	Н (number)					
Peady >h		_Dicplay l	aln manu				
	•	-Display I					
Debugger He	elp:	Address	or data m	ust be spe	ecified by he	x(nee	ed not H')
[1] General		H					
[2] Register		RC	RR	RW			
[3] Break Poi	int	BS	BR	BD	BC	BI	BE
[4] Memory		ML	ME	MD	MF	FL	
[5] Disassem	ble	DA					
[6] Start User	Progr	am	G	S			
H[elp] nu	mber(o	or class), f	or more ir	formatio	n.		
Ready>H4	-	— Di splay o	detailed h	elp of con	nmand relate	ed to	[4] Memory
Debugger He	lp: [4]	Memory					
Memory Loa	d	: M[em]	L[oad]				
Memory Edit	t : M[em] E[dit] startAdrs [size(-W, -L)]						
Memory Dun	np	: M[em] D[ump] [startAdrs] [endAdrs] [ASCIIcode(-A)]					
Memory Fill	•	: M[em] F[ill] [startAdrs] [endAdrs] [Data(-Data)]					
Flash Load		: F[lash] L[oad] [offsetAdrs]					
Ready >							

SH7751R Solution Engine (MS7751RSE01) Overview

Publication Date:	4th Edition, Dec. 2002
Published by:	Platform Design Dept.
	Hitachi ULSI Systems Co., Ltd
Edit by:	Platform Design Dept.
	Hitachi ULSI Systems Co., Ltd

Copy right: © Hitachi ULSI Systems Co. Ltd., 2002. All rights are reserved. Printed in Japan.